TOPIC E

Paper 2 Exam Questions

1.

(a) Explain how the emission lines in the spectrum of a gas provide evidence for discrete energy levels within atoms.

The diagram shows three energy levels of a hypothetical gas.

Transitions between these three levels give rise to photons of three different wavelengths. Two of these wavelengths are 481 nm and 652 nm . The third transition gives rise to an ultraviolet photon.
(b) Draw arrows to identify the transitions that give rise to the wavelengths of 481 nm and 652 nm .
(c) Calculate the wavelength of the ultraviolet photon.
(d) The emission spectrum of hydrogen contains a red spectral line of wavelength 656 nm which comes from a transition from the level $n=3$ to the level $n=2$. White light is transmitted through hydrogen gas at room temperature. The absorption spectrum does not contain a line at 656 nm . Explain this observation.

Question 1		1 Answers	Marks
a		The emitted light does not have a continuous spectrum but has specific, discrete wavelengths \checkmark Since a photon of light has energy $h f$ the atom must have specific, discrete energies \checkmark	2
b			2
c	i	Energy of red photon $E=\frac{h c}{\lambda}=\frac{1.24 \times 10^{-6}}{652 \times 10^{-9}}=1.9018 \mathrm{eV}$ and energy of blue photon $E=\frac{h c}{\lambda}=\frac{1.24 \times 10^{-6}}{481 \times 10^{-9}}=2.5780 \mathrm{eV}$ Energy of UV photon $1.9018+2.578=4.4798 \mathrm{eV} \checkmark$ $\lambda=\frac{h c}{E}=\frac{1.24 \times 10^{-6}}{4.4798}=277 \mathrm{~nm}$ OR $\begin{aligned} & \frac{h c}{\lambda_{\mathrm{UV}}}=\frac{h c}{\lambda_{1}}+\frac{h c}{\lambda_{2}} \checkmark \\ & \lambda_{\mathrm{UV}}=\frac{\lambda_{1} \lambda_{2}}{\lambda_{1}+\lambda_{2}} \checkmark \\ & \lambda_{\mathrm{UV}}=\frac{481 \times 652}{481+652}=277 \mathrm{~nm} \end{aligned}$	3
d		There will be an absorption line if there are electrons in the state $n=2$ so they can absorb a photon and go to $n=3 \checkmark$ But at a low temperature almost all electrons are in the state $n=1$ so there can be no absorption \checkmark	2

2.

(a) Explain why in their experiment Geiger and Marsden used:
(i) an evacuated enclosure
(ii) a gold foil that was very thin
(iii) a beam of alpha particles that was very narrow.
(b) State the name of the force responsible for the deflection of the alpha particles.
(c) (i) Describe the deflections of the alpha particles by the gold foil.
(ii) Outline how the results of this experiment led to the Rutherford model of the atom.
(d) The diagram shows a partially completed path of an alpha particle that left point P as it scatters past a nucleus of gold.

P
\qquad
\bullet
Q

On a copy of the diagram:
(i) complete the path
(ii) draw lines to clearly show the angle of deflection of this alpha particle
(iii) draw an arrow to indicate the direction of the force on the alpha particle at the point of closest approach.
(e) (i) A second alpha particle is shot at the nucleus from position Q with identical kinetic energy, in a direction parallel to that of the alpha particle at P. On your diagram, draw the path of this particle.
(ii) Discuss how, if at all, the answer to (e) (i) would change if the nucleus of gold were replaced by a nucleus of another, heavier, isotope of gold.

Question 2			Answers	Marks
a	i	To avoid collisions of alpha particles with air molecules which would have deflected the alphas \checkmark		1
a	ii	To avoid absorption of alpha particles as well as avoid multiple scatterings \checkmark		1
a	iii	So that the scattering angle could be measured accurately \checkmark		1
b		The electric force \checkmark		1
c	i	Most alpha particles went through the foil with no or little deflection \checkmark Very occasionally, alpha particles were scattered at very large scattering angles \checkmark		2
c	ii	The large angle scatterings required a huge electric force \checkmark The electric force is proportional to $\frac{1}{r^{2}} \checkmark$ So, such a force could be provided if the positive charge of the atom was concentrated in a sphere (10^{5} times) smaller than that the prevailing model \checkmark		3
d	i ii iii			4
e	i			2
e	ii		isotope has the same electric charge \checkmark nothing would change (in the approximation that the nucleus does not recoil) \checkmark	2

3.

(a) In a photoelectric effect experiment a constant number of photons is incident on a photosurface.
(i) Outline what is meant by photons.
(ii) On a copy of the axes below, sketch a graph to show the variation of the electric current I that leaves the photo-surface, with photon frequency f.

(iii) Explain the features of the graph you drew in (ii).
(b) (i) State one feature of the photoelectric effect that cannot be explained by the wave theory of light.
(ii) Describe how the feature stated in (b) (i) is explained by the photon theory of light.
(c) In another experiment, a source of constant intensity and variable frequency f is incident on a metallic surface. The graph shows the variation of the stopping potential V with photon frequency f, for a particular value of intensity.

Use the graph to estimate:
(i) the work function of the metallic surface
(ii) the Planck constant obtained from this experiment
(iii) the longest wavelength of light that will result in electron being emitted from the surface.
(d) The intensity of the source in (c) is doubled. Discuss how the graph in (c) will change, if at all. [2]

Question 3		3 Answers	Marks
a	i	Photons are the massless particles of light \checkmark Whose energy is given by $E=h f$ where f is the frequency of light and h is Planck's constant \checkmark	2
a	ii	 Straight line \checkmark Horizontal \checkmark	2
a	iii	The photocurrent is the rate of emission of electrons from the photosurface times the electron's charge, And this is independent of photon frequency or the electron speed \checkmark	2
b	i	One of Emission without delay \checkmark Electron energy increases with photon frequency Existence of a critical frequency below which no electrons are emitted	1
b	ii	Using the first feature: With very weak electromagnetic waves incident on the surface an electron would have to accumulate energy slowly and so would take a long time to leave the metal \checkmark In the photon model of light an electron absorbs all the energy of the photon at once and so there is no delay \checkmark Using the second feature: The energy of an electromagnetic waves does not depend on frequency \checkmark But the energy of a photon increases with frequency \checkmark Using the third feature: The energy of an electromagnetic waves does not depend on frequency \checkmark But the energy of a photon does and if the frequency is low the supplied energy cannot overcome the work function so no electrons are emitted \checkmark	2
c	i	Extending the graph to the vertical intercept gives $-3.4 \mathrm{~V} \checkmark$ So, the work function is $3.4 \mathrm{eV} \checkmark$	2
c	ii	From $E=h f-\phi$ and $E=e V$ we have that $V=\frac{h}{e} f-\frac{\phi}{e}$ and so the gradient of the graph is the Planck constant divided by er	3

		Gradient is $\frac{8.0-0}{3.0 \times 10^{15}-0.90 \times 10^{15}}=3.8 \times 10^{-15} \mathrm{VHz}^{-1} \checkmark$ $h=1.6 \times 10^{-19} \times 3.8 \times 10^{-15}=6.1 \times 10^{-34} \mathrm{~J} \mathrm{~s} \checkmark$	
c	iii	The critical frequency is $9.0 \times 10^{14} \mathrm{~Hz}$ (intercept on f axis) and so the corresponding wavelength is $\frac{3.0 \times 10^{8}}{9.0 \times 10^{14}}=3.3 \times 10^{-7} \mathrm{~m} \checkmark$	$\mathbf{1}$
d		The energy of the emitted electrons does not depend on intensity \checkmark So, the graph will not change \checkmark	$\mathbf{2}$

4.

A beam of light of diameter 1.2 cm is incident on a metal surface. The wavelength of light is 640 nm and the intensity of the incident light is $2.4 \times 10^{-2} \mathrm{~W} \mathrm{~m}^{-2}$.

(a) Calculate the energy of one photon of this light.
(b) Determine the number of photons per second incident on the surface.
(c) The photons are all absorbed by the surface.
(i) Calculate the momentum of one of the photons.
(ii) Hence determine the pressure that the light exerts on the surface.
(d) Calculate the current leaving the surface if each of the incident photons ejects one electron.
(e) (i) Estimate the time needed for an energy of 1 eV to be absorbed by a circular area of radius $10^{-10} \mathrm{~m}$.
(ii) Comment on the significance of the result in (e) (i).
[2]

Question 4		4 Answers	Marks
a		$E=\frac{h c}{\lambda}=\frac{6.63 \times 10^{-34} \times 3.0 \times 10^{8}}{640 \times 10^{-9}}=3.11 \times 10^{-19} \approx 3.1 \times 10^{-19} \mathrm{~J}$	1
b		The area upon which the light is incident is $\pi r^{2}=\pi\left(\frac{0.012}{2}\right)^{2}=1.13 \times 10^{-4} \mathrm{~m}^{2} \checkmark$ The energy received by this area in 1 s is $2.4 \times 10^{-2} \times 1.13 \times 10^{-4}=2.71 \times 10^{-6} \mathrm{~J} \checkmark$ Hence the number of photons incident is $N=\frac{2.71 \times 10^{-6}}{3.11 \times 10^{-19}}=8.73 \times 10^{12} \approx 8.7 \times 10^{12} \checkmark$	3
c	i	$p=\frac{h}{\lambda}=\frac{6.63 \times 10^{-34}}{640 \times 10^{-9}}=1.036 \times 10^{-27} \approx 1.0 \times 10^{-27} \mathrm{~N} \mathrm{~s}$	1
c	ii	In 1 s the change in the incident photons' momentum is $8.73 \times 10^{12} \times 1.036 \times 10^{-27}=9.04 \times 10^{-15} \approx 9.0 \times 10^{-15} \mathrm{~N}$ which is the force the light exerts on the surface \checkmark Hence the pressure is $\frac{9.04 \times 10^{-15}}{1.13 \times 10^{-4}}=8.0 \times 10^{-11} \mathrm{~Pa} \checkmark$	2
d		$8.73 \times 10^{12} \times 1.6 \times 10^{-19}=1.4 \mu \mathrm{~A} \checkmark$	1
e	i	$\begin{aligned} & 2.4 \times 10^{-2} \times \pi \times\left(10^{-10}\right)^{2} \times t=1.0 \times 1.6 \times 10^{-19} \checkmark \\ & t=\frac{1.0 \times 1.6 \times 10^{-19}}{2.4 \times 10^{-2} \times \pi \times\left(10^{-10}\right)^{2}}=212 \mathrm{~s} \approx 3.5 \mathrm{~min} \checkmark \end{aligned}$	2
e	ii	In the wave theory of light, it would take considerable time for an electron to accumulate enough energy to escape \checkmark Contrary to the observed lack of time delay in the emission of electrons \checkmark	2

5.

In a hydrogen atom an electron of mass m orbits the proton with speed v in a circular orbit of radius r. The Bohr condition $m v r=n \frac{h}{2 \pi}$ implies that $r=a_{0} n^{2}$ where $a_{0}=0.53 \times 10^{-10} \mathrm{~m}$ is known as the Bohr radius.
(a) Deduce that $v=\frac{h}{2 \pi m a_{0}} \times \frac{1}{n}$.
(b) Determine the ratio of the electron speed in the orbit $n=3$ to that in $n=2$.
(c)
(i) Show that the frequency of revolution in the $n^{\text {th }}$ state is given by $f=\frac{h}{4 \pi^{2} m a_{0}^{2}} \frac{1}{n^{3}}$.
(ii) Calculate this frequency for an electron in the state $n=2$ of hydrogen.
(d) Demonstrate that the Bohr condition is equivalent to $2 \pi r=n \lambda$ where λ is the de Broglie wavelength of the electron.

The diagram shows an electron wave in hydrogen.

(e)
(i) State what is meant by an electron wave.
[1]
(ii) Determine the radius of the circular orbit of this electron.
(iii) Predict the energy that must be supplied for this electron to become free.

	sti	5 Answers	Marks
a	i	Use of $m v r=n \frac{h}{2 \pi} \checkmark$ $m v a_{0} n^{2}=n \frac{h}{2 \pi} \checkmark$ To give answer $v=\frac{h}{2 \pi m a_{0}} \frac{1}{n}$.	2
b		$\frac{v_{3}}{v_{2}}=\frac{\frac{h}{2 \pi m a_{0}} \times \frac{1}{3}}{\frac{h}{2 \pi m a_{0}} \times \frac{1}{2}}=\frac{2}{3} \downarrow$	1
c	i	$\begin{aligned} & f=\frac{1}{T}=\frac{v}{2 \pi r} \\ & f=\frac{\frac{h}{2 \pi m a_{0}} \frac{1}{n}}{2 \pi a_{0} n^{2}} \end{aligned}$ To give answer $f=\frac{h}{4 \pi^{2} m a_{0}^{2}} \times \frac{1}{n^{3}}$.	2
c	ii	$\begin{aligned} & f=\frac{6.63 \times 10^{-34}}{4 \pi^{2} \times 9.1 \times 10^{-31} \times\left(0.53 \times 10^{-10}\right)^{2}} \times \frac{1}{2^{3}} \\ & f=8.2 \times 10^{14} \mathrm{~Hz} \end{aligned}$	2
d		$\begin{aligned} & m v r=n \frac{h}{2 \pi} \text { and } \lambda=\frac{h}{p} \\ & p r=n \frac{h}{2 \pi} \checkmark \\ & 2 \pi r=n \frac{h}{p} \checkmark \end{aligned}$ Leading to answer.	2
e	i	An electron wave is a wave whose amplitude is related to the probability of finding the electron in a region of space at some time \checkmark	1
e	ii	This corresponds to $n=4 \checkmark$ $r_{4}=n^{2} a_{0}=4^{2} \times 0.53 \times 10^{-10}=8.5 \times 10^{-10} \mathrm{~m} \checkmark$	2
e	iii	$E_{4}=-\frac{13.6}{4^{2}}=-0.85 \mathrm{eV}$ is the minimum energy that must be supplied \checkmark	1

6.

(a) Suggest how the photoelectric effect and the Compton effect provide evidence for the particle nature of light.
(b) A photon of wavelength $2.80 \times 10^{-12} \mathrm{~m}$ scatters off an electron at rest at an angle of 60.0° to the original path of the photon.
The electron moves off at an angle ϕ with momentum $2.10 \times 10^{-22} \mathrm{~N} \mathrm{~s}$.

Calculate
(i) the wavelength of the scattered photon.
(ii) the energy transferred to the electron.
(c) Determine, to two significant figures, ϕ.

Question 6		6 Answers	Marks
a		The photoelectric effect provides evidence for light as a particle of energy $h f$ The Compton provides evidence for light as a particle of energy $h f$ and momentum $\frac{h}{\lambda} \checkmark$	2
b	i	$\begin{aligned} & \lambda^{\prime}-\lambda=\frac{h}{m c}(1-\cos \theta) \text { so } \\ & \lambda^{\prime}-2.80 \times 10^{-12}=\frac{6.63 \times 10^{-34}}{9.11 \times 10^{-31} \times 3.0 \times 10^{8}}\left(1-\frac{1}{2}\right)=1.213 \times 10^{-12} \mathrm{~m} \checkmark \\ & \lambda^{\prime}=4.013 \times 10^{-12} \approx 4.01 \times 10^{-12} \mathrm{~m} \checkmark \end{aligned}$	2
b	ii	$\Delta E=\frac{h c}{\lambda}-\frac{h c}{\lambda^{\prime}}=\frac{1.24 \times 10^{-6}}{2.80 \times 10^{-12}}-\frac{1.24 \times 10^{-6}}{4.01 \times 10^{-12}}=133.63 \approx 134 \mathrm{keV} \checkmark$	2
c		Alternative 1 Momentum conservation gives in y direction: Momentum of scattered photon is $\frac{h}{\lambda^{\prime}}=\frac{6.63 \times 10^{-34}}{4.013 \times 10^{-12}}=1.652 \times 10^{-22} \mathrm{~m}$ $\begin{aligned} & 1.652 \times 10^{-22} \times \sin 60^{\circ}=2.09585 \times 10^{-22} \times \sin \phi \\ & \sin \phi=\frac{1.652 \times 10^{-22} \times \sin 60^{\circ}}{2.10 \times 10^{-22}}=0.6813 \Rightarrow \phi=43^{\circ} \end{aligned}$ Alternative 2 Momentum conservation gives in x direction: Momenta of photons: $\frac{h}{\lambda^{\prime}}=\frac{6.63 \times 10^{-34}}{4.013 \times 10^{-12}}=1.652 \times 10^{-22} \mathrm{~m}$ and $\begin{aligned} & \frac{h}{\lambda^{\prime}}=\frac{6.63 \times 10^{-34}}{2.80 \times 10^{-12}}=2.368 \times 10^{-22} \mathrm{~m} \\ & 2.368 \times 10^{-22}=1.652 \times 10^{-22} \times \cos 60^{\circ}+2.10 \times 10^{-22} \times \cos \phi \\ & \cos \phi=\frac{2.368 \times 10^{-22}-1.652 \times 10^{-22} \times \cos 60^{\circ}}{2.10 \times 10^{-22}}=0.7343 \Rightarrow \phi=43^{\circ} \end{aligned}$	3

7.

(a) Outline what is meant by the de Broglie hypothesis.
(b)
(i) Show that the de Broglie wavelength of an electron that has been accelerated from rest by a potential difference V is given by $\lambda=\frac{h}{\sqrt{2 m e V}}$.
(ii)Calculate the de Broglie wavelength of an electron that has been accelerated from rest by a potential difference of 120 V .
(c) Describe an experiment in which the de Broglie hypothesis is tested.
(d) A bullet of mass 0.080 kg leaves a gun with speed $420 \mathrm{~m} \mathrm{~s}^{-1}$. The gun is in perfect condition and has been fired by an expert marksman. The bullet must pass through a slit of width 5.0 cm on its way to its target. A student says that the bullet will miss its target because of de Broglie's hypothesis. By suitable calculations determine whether the student is correct.

Question $\mathbf{7}$ Answers		Marks	
a		All moving particles have wavelike properties \checkmark With a wavelength given by $\lambda=\frac{h}{p} \checkmark$	$\mathbf{2}$
b	\mathbf{i}	$E_{\mathrm{K}}=\mathrm{eV} \checkmark$ $E_{\mathrm{K}}=\frac{p^{2}}{2 m} \Rightarrow p=\sqrt{2 m E_{\mathrm{K}}}=\sqrt{2 \mathrm{meV}} \checkmark$ Substitute in $\lambda=\frac{h}{p}$ to get answer.	$\mathbf{2}$
b	ii	$\lambda=\frac{6.63 \times 10^{-34}}{\sqrt{2 \times 9.1 \times 10^{-31} \times 120 \times 1.6 \times 10^{-19}}}=1.1 \times 10^{-10} \mathrm{~m} \checkmark$ c d	The de Broglie wavelength of the bullet is $\lambda=\frac{6.63 \times 10^{-34}}{0.080 \times 420} \approx 2 \times 10^{-35} \mathrm{~m} \checkmark$ This is way too small to show diffraction effects through a 5 cm hole \checkmark The bullet will hit the target \checkmark

8.

Electrons are directed at two slits and are observed by a detector some distance away.

The detector records the number of electrons incident on it. The following pattern was observed, where each dot represents a detected electron.

(a) Explain how this pattern is evidence in support of the wave nature of the electron.
(b) Draw a diagram to show the pattern that would be expected if the electrons behaved as particles.
(c) The path difference at P is $3.0 \times 10^{-11} \mathrm{~m}$. The kinetic energy of the electrons is 420 eV . Explain how these data support the wave nature of the electron.

Question 8			8 Answers	Marks
a		The diagram is a typical interference pattern \checkmark Interference is a fundamental property of waves \checkmark		2
b			 Diagram as shown \checkmark	1
c	i		$\begin{aligned} & E_{\mathrm{K}}=\frac{p^{2}}{2 m} \Rightarrow p=\sqrt{2 m E_{\mathrm{K}}} \checkmark \\ & p=\sqrt{2 \times 9.1 \times 10^{-31} \times 420 \times 1.6 \times 10^{-19}}=1.106 \times 10^{-23} \mathrm{Ns} \checkmark \\ & \lambda=\frac{h}{p}=\frac{6.63 \times 10^{-34}}{1.106 \times 10^{-23}}=5.995 \times 10^{-11} \approx 6.0 \times 10^{-11} \mathrm{~m} \checkmark \end{aligned}$ is the first minimum of the interference pattern and so path difference is $\left.0+\frac{1}{2}\right) \lambda=3.0 \times 10^{-11} \mathrm{~m}$ as stated \checkmark	4

9.

(a) Radioactive decay is random and spontaneous. State what you understand by this statement.
(b) The graph shows how activity of a sample containing a radioactive isotope of thorium ${ }_{90}^{225} \mathrm{Th}$ varies with time.
A/Bq 8000 (
(i) State what is meant by an isotope.
(ii) Determine the half-life of thorium.
(iii) State one assumption made in obtaining the answer to (ii).
(iv) Draw a graph to show the variation of the activity with time up to 30 minutes.
(c) (i) Thorium undergoes alpha decay. Complete the reaction equation:

$$
\begin{equation*}
{ }_{90}^{225} \mathrm{Th} \rightarrow{ }_{?}^{?} \mathrm{Ra}+{ }_{?}^{?} \alpha \tag{2}
\end{equation*}
$$

Atomic masses: thorium 225.02395 u , radium 221.013917 u , helium 4.0026603 u .
(ii) Calculate, in kg, the mass that has been converted into energy in this reaction.
(iii) Calculate, in MeV , the energy released.
(d) The nuclei of thorium are at rest when they decay. Determine the fraction of the energy released that is carried by the alpha particle.

Question 9		9 Answers	Marks
a		Random: We cannot predict which nucleus will decay \checkmark Or when it will decay \checkmark Spontaneous: The decay will happen independently of any action from the outside \checkmark	3
b	i	A nucleus of the same chemical element i.e. with the same number of protons but differing in the number of neutrons \checkmark	1
b	ii	Finding the point with half the initial activity \checkmark $9.0 \mathrm{~min} \checkmark$	2
b	iii	Ignored a possible background activity/Assumed daughter nucleus is stable so it does not contribute to activity \checkmark	1
b	iv		1
c	i	${ }_{90}^{225} \mathrm{Th} \rightarrow{ }_{88}^{221} \mathrm{Ra}+{ }_{2}^{4} \alpha$ Alpha numbers \checkmark Radium numbers \checkmark	2
c	ii	$\begin{aligned} & \text { Mass difference: } \\ & 225.02395-221.013917-4.0026603=7.3727 \times 10^{-3} \mathrm{u} \checkmark \\ & 7.3727 \times 10^{-3} \times 1.661 \times 10^{-27}=1.22 \times 10^{-29} \mathrm{~kg} \checkmark \end{aligned}$	2
c	iii	$7.3727 \times 10^{-3} \times 931.5=6.87 \mathrm{MeV} \checkmark$	1
d		The alpha and radium have equal and opposite momenta \checkmark Ratio of energies is $\frac{K_{\alpha}}{K_{R}}=\frac{\frac{p^{2}}{2 m_{\alpha}}}{\frac{p^{2}}{2 m_{R}}}=\frac{m_{R}}{m_{\alpha}} \approx \frac{221}{4} \approx 52 \checkmark$ Alpha particle energy fraction is then $\frac{52}{53} \checkmark$	3

10.

(a) State what is meant by the binding energy of a nucleus.
(b) Calculate the binding energy per nucleon of the stable nucleus ${ }_{7}^{14} \mathrm{~N}$. The nuclear mass of ${ }_{7}^{14} \mathrm{~N}$ is 13.9992 u .
(c) ${ }_{7}^{17} \mathrm{~N}$ is an unstable isotope of ${ }_{7}^{14} \mathrm{~N}$.
(i) State what is meant by the term isotopes.
(ii) Suggest how the binding energy per nucleon for ${ }_{7}^{17} \mathrm{~N}$ compares with that of ${ }_{7}^{14} \mathrm{~N}$.
(iii) ${ }_{7}^{17} \mathrm{~N}$ decays to the nuclide ${ }_{6}^{13} \mathrm{C}$ by a sequence of two decays. State the types of decay taking place.
(d) Suggest why most nuclei with $A>60$ have roughly the same binding energy per nucleon.
(e) The dark band in the graph of neutron number N against proton number Z, shows the position of stable nuclei. The straight line is the equation $N=Z$.

(i) Suggest why large stable nuclei have more neutrons than protons.
(ii) An unstable nucleus occupies position P in the graph. Suggest the likely decay for this nucleus.

11.

A fission reaction is given by the equation:

$$
{ }_{0}^{1} \mathrm{n}+{ }_{92}^{235} \mathrm{U} \rightarrow{ }_{38}^{90} \mathrm{Sr}+{ }_{54}^{143} \mathrm{Xe}+x_{0}^{1} \mathrm{n}
$$

(a) (i) Suggest whether this is an example of spontaneous or induced fission.
(ii) Determine the number x of neutrons produced.
(b) The following data are available for binding energy per nucleon:
$\mathrm{U}: 7.59 \mathrm{MeV} ; \mathrm{Sr}: 8.70 \mathrm{MeV} ; \mathrm{Xe}: 8.20 \mathrm{MeV}$

Show that the energy released in this reaction is about 170 MeV .

A nuclear fission reactor produces energy through the reaction above. The reactor produces 580 MW of electrical power with an overall efficiency of 38%.
(c) Estimate
(i) the mass of uranium-235 that must undergo fission in one year.
(ii) the mass of radioactive waste collected in one year.
(d) Suggest why special precautions must be taken for the storage of nuclear waste.
(e) Describe the function of the following elements of a nuclear fission reactor:
(i) moderator
(ii) control rods
(iii) heat exchanger

12.

The half-life of radium ${ }_{88}^{226} \mathrm{Ra}$ is 1600 years. Radium decays into radon (Rn). Radon is unstable with a half-life of 3.8 days.
(a) Show that the activity of 1.5 mg of radium is about $5.5 \times 10^{7} \mathrm{~Bq}$.
(b) The graph shows the activity of radium as a function of time in days.

Explain why the graph appears to be a horizontal line.
(c) The decay of radium into radon is an alpha decay. Write down the equation of the decay.
(d) The graph shows the variation with time of the activity of radium (blue) and radon (red).

(i) Explain what can be deduced from the fact that the activity of radon eventually becomes constant.
(ii) Estimate the mass of radon present after 30 days.
(e) The half-life of an isotope is 1.0 minute. Use the concept of the decay constant as a probability per unit time, to show that the probability of decay within one minute is 0.50 .

13.

Carbon-14 is unstable and decays to nitrogen by beta minus emission according to the reaction equation:
${ }_{6}^{14} \mathrm{C} \rightarrow{ }_{7}^{14} \mathrm{~N}+{ }_{-1}^{0} \mathrm{e}+$?
(a) State, for the missing particle in the reaction equation:
(i) its name
(ii) two of its properties.
(b) Outline the evidence that made the presence of this particle in beta decay necessary.

In a living tree, the ratio of carbon-14 to carbon-12 atoms is constant at 1.3×10^{-12}. The half-life of ${ }_{6}^{14} \mathrm{C}$ is 5730 years.
(c) Suggest why this ratio will decrease after the tree dies.

A 15 g piece of charcoal is found at an archaeological site.
(d) Calculate the number of atoms of carbon-12 in the piece of charcoal.
(e) (i) The piece of charcoal has an activity of 1.40 Bq . Deduce that the ratio of carbon- 14 to carbon12 atoms in the charcoal is 4.85×10^{-13}.
(ii) Deduce the age of the charcoal.

14.
(a) Outline the evidence in support of nuclear energy levels.
(b) The diagram shows nuclear energy levels for ${ }_{96}^{244} \mathrm{Cm}$ and ${ }_{94}^{240} \mathrm{Pu}$.
(i) On a copy of the diagram, indicate the alpha decay of ${ }_{96}^{244} \mathrm{Cm}$ into ${ }_{94}^{240} \mathrm{Pu}$ that is followed by the emission of a photon of energy 0.043 MeV .
(ii) Deduce the energy of the emitted alpha particle.

(iii) Calculate the wavelength of the emitted photon.

15.
(a) Show that the density of all nuclei is about $2 \times 10^{17} \mathrm{~kg} \mathrm{~m}^{-3}$.
(b) (i) In Rutherford scattering, alpha particles of energy 5.2 MeV are directed head-on at a lead nucleus (${ }_{88}^{202} \mathrm{~Pb}$). Estimate the distance of closest approach between the alpha particles and the centre of the lead nucleus.
(ii) Determine the distance between the point of closest approach and the nuclear surface. [2]
(iii) Calculate the acceleration of the alpha particle when at the point of closest approach. The mass of an alpha particle is $6.64 \times 10^{-27} \mathrm{~kg}$.
(c) The graph shows how the number of alpha particles that are observed at a fixed scattering angle depends on alpha particle energy according to Rutherford's calculations.

(i) State one assumption the Rutherford calculations are based on.
(ii) On a copy of the diagram above, indicate deviations from the Rutherford scattering. Explain your answer.

Question 15 Answers			Marks
a		$\begin{aligned} & \rho=\frac{M}{V}=\frac{M}{\frac{4 \pi}{3} R^{3}}=\frac{3 M}{4 \pi R^{3}} \checkmark \\ & R=1.2 \times 10^{-15} \times A^{1 / 3} \mathrm{~m} \text { and } M \approx A u \checkmark \\ & \rho=\frac{3 \times A \times 1.661 \times 10^{-27}}{4 \pi \times\left(1.2 \times 10^{-15} \times A^{1 / 3}\right)^{3}}=2.3 \times 10^{17} \mathrm{~kg} \mathrm{~m}^{-3} \checkmark \end{aligned}$	3
b	i	$\begin{aligned} & E_{\mathrm{K}}=\frac{k Q q}{r} \Rightarrow r=\frac{k Q q}{E_{\mathrm{K}}} \checkmark \\ & r=\frac{8.99 \times 10^{9} \times 2 \times 88 \times\left(1.6 \times 10^{-19}\right)^{2}}{5.2 \times 10^{6} \times 1.6 \times 10^{-19}} \\ & r=4.87 \times 10^{-14} \approx 4.9 \times 10^{-14} \mathrm{~m} \checkmark \end{aligned}$	3
b	ii	$\begin{aligned} & R=1.2 \times 10^{-15} \times A^{1 / 3} \mathrm{~m}=1.2 \times 10^{-15} \times 202^{1 / 3} \mathrm{~m}=7.04 \times 10^{-15} \mathrm{~m} \checkmark \\ & 4.87 \times 10^{-14}-7.04 \times 10^{-15}=4.17 \times 10^{-14} \approx 4.2 \times 10^{-14} \mathrm{~m} \checkmark \end{aligned}$	2
b	iii	$\begin{aligned} & F=\frac{8.99 \times 10^{9} \times 2 \times 88 \times\left(1.6 \times 10^{-19}\right)^{2}}{\left(4.87 \times 10^{-14}\right)^{2}}=17.08 \mathrm{~N} \\ & a=\frac{F}{m}=\frac{17.08}{6.64 \times 10^{-27}}=2.6 \times 10^{27} \mathrm{~m} \mathrm{~s}^{-2} \end{aligned}$	2
c	i	The only force acting on the alpha particle is the electric force \checkmark	1
		 Diagram \checkmark As the energy increases the alpha particles approach closer to the nucleus and so the nuclear force acts on them, the nucleus absorbs some, thus reducing the number that is being scattered \checkmark	2

16.

(a) Distinguish between nuclear fusion and nuclear fission.
(b) By reference to the binding energy curve, explain why energy is released in nuclear fusion and nuclear fission.
(c) (i) State the conditions for controlled nuclear fusion to take place.
(ii) Explain one of the conditions you mentioned in (c) (i).
(d) (i) Identify particles X and Y in the fusion reaction ${ }_{2}^{3} \mathrm{He}+{ }_{1}^{3} \mathrm{H} \rightarrow{ }_{2}^{4} \mathrm{He}+X+Y$.
(ii) The following binding energies per nucleon are given:
$\mathrm{He}-3=2.572681 \mathrm{MeV} ; \mathrm{H}-3=2.827266 \mathrm{MeV} ; \mathrm{He}-4=7.073915 \mathrm{MeV}$

Calculate the energy released.

17.
(a) Describe, with the help of a diagram, what is meant by the parallax angle of a star.
[2]

The parallax angle of a star S is 0.035 arcsec. The apparent brightness of S is $3.4 \times 10^{-10} \mathrm{~W} \mathrm{~m}^{-2}$.
(b) (i) Show that the distance to S is about $8.8 \times 10^{17} \mathrm{~m}$.
(ii) Calculate the luminosity of S.
(c) The graph shows the black body spectrum for S .

B

(i) Estimate the surface temperature of S .
(ii) Calculate the radius of S .

Question 17		17 Answers	Marks
a		Diagram \checkmark Parallax is the angle at which a star subtends a distance equal to the radius of the Earth's orbit around the Sun \checkmark	2
b	i	$\begin{aligned} & d=\frac{1}{p}=\frac{1}{0.035}=28.57 \mathrm{pc} \\ & d=28.57 \times 3.26 \times 9.46 \times 10^{15}=8.81 \times 10^{17} \mathrm{~m} \end{aligned}$	2
b	ii	$\begin{aligned} & b=\frac{L}{4 \pi d^{2}} \Rightarrow L=4 \pi d^{2} b \\ & L=4 \pi \times\left(8.81 \times 10^{17}\right)^{2} \times 3.4 \times 10^{-10}=3.317 \times 10^{27} \approx 3.3 \times 10^{27} \mathrm{~W} \checkmark \end{aligned}$	2
c	i	Peak wavelength at $420 \mathrm{~nm} \checkmark$ $T=\frac{2.9 \times 10^{-3}}{420 \times 10^{-9}}=6905 \approx 6900 \mathrm{~K}$	2
c	ii	$\begin{aligned} & L=\sigma A T^{4}=\sigma 4 \pi R^{2} T^{4} \Rightarrow R=\sqrt{\frac{L}{\sigma 4 \pi T^{4}}} \checkmark \\ & R=\sqrt{\frac{3.317 \times 10^{27}}{5.67 \times 10^{-8} \times 4 \pi \times 6905^{4}}} \checkmark \\ & R=1.4 \times 10^{9} \mathrm{~m} \checkmark \end{aligned}$	3

18.

An HR diagram with the Sun marked is shown.

(a) Label
(i) the main sequence by M ,
(ii) the region of white dwarfs by W ,
(iii) the region of red giants by R ,
(iv) the instability region by I .
(b) Arcturus has luminosity $170 L_{\odot}$ and temperature 4300 K .
(i) Show that the radius of Arcturus is $24 R_{\odot}$.
(ii) The mass of Arcturus is approximately the same as that of the Sun. Calculate the ratio of densities $\frac{\rho_{\mathrm{A}}}{\rho_{\odot}}$.
(iii) Label the approximate position of Arcturus on the HR diagram.
(iv) State the likely end stage in the evolution of Arcturus.
(c) The HR diagram shows the path of a star in the instability region.

Suggest the reason why the luminosity of the star is variable.

Question 18		18 Answers	Marks
a		Blue thick line = Main sequence Red dotted line $=$ Red giants Blue dotted line = White dwarfs Green dotted line = Instability region	4
b	i	$\begin{aligned} & L=\sigma A T^{4}=\sigma 4 \pi R^{2} T^{4} \Rightarrow R=\sqrt{\frac{L}{\sigma 4 \pi T^{4}}} \checkmark \\ & \frac{R}{R_{\odot}}=\sqrt{\frac{L}{L_{\odot}}} \times \frac{5800^{2}}{4300^{2}}=\sqrt{170} \times \frac{5800^{2}}{4300^{2}}=23.7 \checkmark \end{aligned}$	2
b	ii	$\frac{\rho_{A}}{\rho_{\odot}}=\left(\frac{R_{\odot}}{R}\right)^{3}=\left(\frac{1}{23.7}\right)^{3}=7.5 \times 10^{-5 \checkmark}$	1
b	iii	See red dot in diagram in (a) \checkmark	1
b	iv	White dwarf \checkmark	1
c		The star is changing its size by pulsating \checkmark And the temperature changes as well \checkmark Leading to variations in the luminosity.	2

19.

(a) (i) Describe how a main sequence star maintains equilibrium.
(ii) State the common characteristic of main sequence stars.
(b) The star Vega has luminosity $40 L_{\odot}$, temperature $1.6 T_{\odot}$ and mass $2.1 M_{\odot}$. Determine the ratios
(i) $\frac{R_{\mathrm{V}}}{R_{\odot}}$ of radii,
(ii) $\frac{\rho_{\mathrm{V}}^{\odot}}{\rho_{\odot}}$ of densities.
(c) Draw the expected evolutionary path of Vega on the HR diagram.

(d) Explain why the luminosity of Vega in the red giant phase will increase even though its surface temperature will decrease.

Question 19		19 Answers	Marks
a	i	There is a balance between the gravitational pressure that tends to shrink the star \checkmark And the outward radiation pressure generated by the energy produced in fusion in the core \checkmark	2
a	ii	They fuse hydrogen into helium \checkmark	1
b	i	$\begin{aligned} & L=\sigma A T^{4}=\sigma 4 \pi R^{2} T^{4} \Rightarrow R=\sqrt{\frac{L}{\sigma 4 \pi T^{4}}} \\ & \frac{R_{\mathrm{V}}}{R_{\odot}}=\sqrt{\frac{L_{\mathrm{V}}}{L_{\odot}}}\left(\frac{T_{\odot}}{T_{\mathrm{V}}}\right)^{2}=\sqrt{40} \times \frac{1}{1.6^{2}}=2.47 \approx 2.5 \checkmark \end{aligned}$	2
b	ii	$\begin{aligned} & \frac{\rho_{\mathrm{V}}}{\rho_{\odot}}=\frac{M_{\mathrm{V}}}{M_{\odot}}\left(\frac{R_{\odot}}{R}\right)^{3} \checkmark \\ & \frac{\rho_{\mathrm{V}}}{\rho_{\odot}}=(2.1) \times\left(\frac{1}{2.47}\right)^{3}=0.14 \checkmark \end{aligned}$	2
c		 Approximate position of Vega on the HR diagram \checkmark Path towards the red giant region \checkmark then a counterclockwise curve from that region into the white dwarf region \checkmark	3
d		Because the radius increases by a very large factor \checkmark And luminosity depends on the square of the radius \checkmark	2

20.

The main sequence star Theta Carinae (θ Carinae) has mass $15 M_{\odot}$ (of which 75% is hydrogen) and luminosity $2.6 \times 10^{4} L_{\odot}$. (Solar mass $=2.0 \times 10^{30} \mathrm{~kg}$, solar luminosity $=3.8 \times 10^{26} \mathrm{~W}$.)
(a) Estimate
(i) the mass that gets converted into energy in one year.
(ii) the time T it will take to convert 12% of the hydrogen mass of the star into energy.
(b)
(i) It is suggested that for main sequence stars, the luminosity, L, is proportional to a power of the mass, M, i.e. $L \propto M^{n}$. Based on the data for θ Carinae, estimate that $n \approx 3.75$.
(ii) Predict without any calculations whether the time T (defined in (a)(ii)) for the Sun will be larger or smaller than that for θ Carinae.
(c) Suggest the likely sequence of events in the life of θ Carinae after the star leaves the man sequence.

Question 20		Answers	Marks
a	i	Luminosity is $2.6 \times 10^{4} \times 3.8 \times 10^{26}=9.88 \times 10^{30} \mathrm{~W} \checkmark$ Energy released in $1 \mathrm{yr}: 9.88 \times 10^{30} \times 365 \times 24 \times 60 \times 60=3.12 \times 10^{38} \mathrm{~J} \checkmark$ Equivalent to a mass: $\frac{3.12 \times 10^{38}}{\left(3 \times 10^{8}\right)^{2}}=3.47 \times 10^{21} \mathrm{~kg} \checkmark$	$\mathbf{3}$
a	ii	Original mass of hydrogen: $0.12 \times 0.75 \times 15 \times 2.0 \times 10^{30}=2.70 \times 10^{30} \mathrm{~kg} \checkmark$ $T=\frac{2.70 \times 10^{30}}{3.47 \times 10^{21}}=7.8 \times 10^{8} \mathrm{yr} \checkmark$	$\mathbf{2}$
b	\mathbf{i}	$15^{n}=2.6 \times 10^{4} \checkmark$ Taking logs: $n=3.75 \checkmark$	$\mathbf{2}$
b	ii	θ Carinae fuses mass at a disproportionately higher rate \checkmark And so, it takes much less time to fuse 12% of the available hydrogen mass Compared to a lower mass star such as the Sun \checkmark	$\mathbf{2}$
c	The star will leave the main sequence and move to the red supergiant region \checkmark It will then explode as a supernova \checkmark And will end up as a neutron star if the final core mass is below the Oppenheimer- Volkoff limit \checkmark	$\mathbf{3}$	

